Population dynamics with a refuge: fractal basins and the suppression of chaos.

نویسندگان

  • T J Newman
  • J Antonovics
  • H M Wilbur
چکیده

We consider the effect of coupling an otherwise chaotic population to a refuge. A rich set of dynamical phenomena is uncovered. We consider two forms of density dependence in the active population: logistic and exponential. In the former case, the basin of attraction for stable population growth becomes fractal, and the bifurcation diagrams for the active and refuge populations are chaotic over a wide range of parameter space. In the case of exponential density dependence, the dynamics are unconditionally stable (in that the population size is always positive and finite), and chaotic behavior is completely eradicated for modest amounts of dispersal. We argue that the use of exponential density dependence is more appropriate, theoretically as well as empirically, in a model of refuge dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی آشفتگی در الگوی خطر سیلاب در تهران

Flood as a natural disaster follows certain erratic patterns which was made confounding factor. Flood risk is variable and complex that depends on very phenomena such as rainfall, runoff concentration and high exposure of the flooding downstream areas.     This are changes over time and from regions due to natural conditions, human activities, and damage culture...

متن کامل

Improving security of double random phase encoding with chaos theory using fractal images

This study presents a new method based on the combination of cryptography and information hiding methods. Firstly, the image is encoded by the Double Random Phase Encoding (DRPE) technique. The real and imaginary parts of the encoded image are subsequently embedded into an enlarged normalized host image. DRPE demands two random phase mask keys to decode the decrypted image at the destination. T...

متن کامل

The Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population

A mathematical model describing the dynamics  of a  delayed  stage structure prey - predator  system  with  prey  refuge  is  considered.  The  existence,  uniqueness  and bounded- ness  of  the  solution  are  discussed.    All  the  feasibl e  equilibrium  points  are determined.  The   stability  analysis  of  them  are  investigated.  By  employ ing  the time delay as the bifurcation parame...

متن کامل

Non-unique population dynamics: basic patterns

We review the basic patterns of complex non-uniqueness in simple discrete-time population dynamics models. We begin by studying a population dynamics model of a single species with a two-stage, two-habitat life cycle. We then explore in greater detail two ecological models describing host–macroparasite and host–parasitoid interspecific interactions. In general, several types of attractors, e.g....

متن کامل

Chaotic Analysis and Prediction of River Flows

Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theoretical population biology

دوره 62 2  شماره 

صفحات  -

تاریخ انتشار 2002